Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Colloid Interface Sci ; 663: 1087-1098, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38402009

RESUMO

The development of highly reusable, affordable, and durable photocatalysts for the production of hydrogen peroxide (H2O2) remained a challenge. In this study, a homojunction photocatalyst (SPGCN) is constructed between phosphorylated g-C3N4 (PCN) and sulfur self-doped g-C3N4 (SCN) using a simple wet impregnation method. Later, the obtained SPGCN homojunction is transformed into hydrogel beads using carboxymethyl cellulose via an effective cross-linking strategy (SPGCN/CMC). The photocatalytic beads displayed a phenomenal H2O2 production of 3.5 mM under visible light illumination for 60 min. The SPGCN/CMC hydrogel beads showed a maximum reusability of 10 cycles with a decline of 1.5 mM H2O2 production. The improved photocatalytic efficiency is indicated by strengthened utilization of visible light via tuning of the band gap, suppressed recombination of electron-hole pairs, and higher separation efficiency through the effective construction of Z-scheme between the phosphorylated carbon nitride and the sulfur-self-doped carbon nitride present in the SPGCN/CMC beads. The mechanistic studies affirmed the dominant role of superoxide radicals in H2O2 production. The photocatalytic H2O2 production followed a highly selective two-electron reduction reaction. Overall, this study highlights the efficient engineering of carbon nitride-based materials towards artificial photosynthesis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...